On the Steinhaus and Bergman Properties for Infinite Products of Finite Groups

نویسنده

  • SIMON THOMAS
چکیده

We study the relationship between the existence of nonprincipal ultrafilters over ω and the failure of the Steinhaus and Bergman properties for infinite products of finite groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Bergman and Steinhaus Properties for Infinite Products of Finite Groups

We study the relationship between the existence of nonprincipal ultrafilters over ω and the failure of the Bergman and Steinhaus properties for infinite products of finite groups.

متن کامل

Infinite-dimensional General Linear Groups Are Groups of Universally Finite Width

Recently George Bergman proved that the symmetric group of an infinite set possesses the following property which we call by the universality of finite width: given any generating set X of the symmetric group of an infinite set Ω, there is a uniform bound k such that any permutation σ ∈ Sym(Ω) is a product of at most k elements of X∪X. Bergman also formulated a sort of general conjecture statin...

متن کامل

$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles

‎In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle‎. ‎We prove optimal estimates for the mapping properties of the Bergman projection on these domains.

متن کامل

Infinite product representation of solution of indefinite SturmLiouville problem

In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011